Інтерлейкін-6 та розвиток колоректального раку
ARTICLE PDF

Ключові слова

інтерлейкін-6
колоректальний рак

Як цитувати

Громакова, І., Сорочан, П., Прохач, Н., & Громакова, І. (2021). Інтерлейкін-6 та розвиток колоректального раку. Український радіологічний та онкологічний журнал, 29(4), 89-107. https://doi.org/10.46879/ukroj.4.2021.89-107

Анотація

Актуальність. Колоректальний рак (КР) одне з найбільш частих злоякісних новоутворень у світі. Він займає третє місце в структурі онкологічної захворюваності друге – в структурі смертності. Одним з важливих факторів, що призводять до КР, є хронічне запалення кишківника, вирішальну роль в якому відіграють прозапальні цитокіни. Серед прозапальних цитокінів інтерлейкін-6 посідає одне з провідних місць у патогенезі КР. Отже актуальним є з’ясування ролі інтерлейкіну-6 (IL-6) у розвитку та прогресуванні КР, визначення діагностичної та прогностичної цінності цитокіну та аналіз застосування терапевтичних стратегій, спрямованих на сигнальний шлях IL-6, при КР. Мета роботи – проаналізувати роль прозапального цитокіну IL-6 у розвитку колоректального раку, розглянути механізми онкогенної дії цитокіну, оцінити результати застосування терапевтичних стратегій, спрямованих на сигнальний шлях IL-6 при колоректальному раку та охарактеризувати прогностичну та діагностичну цінність IL-6. Матеріали та методи. Пошук даних для огляду проводили в базах даних Pubmed, Cochrane Library, ScienceDirect. Проаналізовано результати досліджень, виконаних до травня 2021 року. Відповідні неопубліковані дослідження виявлено у реєстрі клінічних випробувань Національних інститутів здоров’я США www.clinicaltrials.gov. Результати та їх обговорення. Дано оцінку діагностичної та прогностичної цінності IL-6 у хворих на КР. Висвітлено механізми регуляції IL-6 росту пухлини, ангіогенезу, апоптозу, метастазування при КР. Наведено результати доклінічного і клінічного тестування моноклональних антитіл до ІL-6, ІL-6R, низькомолекулярних сполук, що впливають на цитокінову рецепторну передачу сигналів через gp130 та JAK-STAT, а також лікарських препартів та сполук природного походження, які здатні чинити інгібіторну дію на IL-6/STAT3 сигнальний шлях. Висновки. Стратегії, спрямовані на блокування передачі сигналів IL-6, можуть бути потенційно корисні у разі злоякісних новоутворень, передусім як компонент комбінованої терапії, або для того, щоб запобігти несприятливим симптомам, пов’язаним з імунотерапією раку. Подальші дослідження необхідні для остаточного з’ясування ролі класичної передачі сигналу IL-6 і транс-сигналінгу у патогенезі колоректального раку, оскільки це може створити підґрунтя для більш цілеспрямованого пригнічення функцій цього плейотропного цитокіну.

https://doi.org/10.46879/ukroj.4.2021.89-107
ARTICLE PDF

Посилання

Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021. (In English). URL: https://acsjournals.onlinelibrary.wiley.com/doi/epdf/10.3322/caac.21660

Fornaro R, Caratto M, Caratto E et al. Colorectal Cancer in Patients With Inflammatory Bowel Disease: The Need for a Real Surveillance Program. Clinical Colorectal Cancer. 2016;15(3):204–12. (In English). DOI: https://doi.org/10.1016/j.clcc.2016.02.002

Teimoorian F, Ranaei M, Hajian Tilaki K et al. Association of Helicobacter pylori Infection with Colon Cancer and Adenomatous Polyps. Iranian Journal of Pathology. 2018;13(3):325–32. (In English). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322532/pdf/ijp-13-325.pdf

Wang R, Leong RW. Primary sclerosing cholangitis as an independent risk factor for colorectal cancer in the context of inflammatory bowel disease: A review of the literature. World Journal of Gastroenterology. 2014;20(27):8783–9. (In English). DOI: https://doi.org/10.3748/wjg.v20.i27.8783

Hirano T. IL-6 in inflammation, autoimmunity and cancer. International Immunology. 2021;33(3):127–48. (In English). DOI: https://doi.org/10.1093/intimm/dxaa078

Xu J, Ye Y, Zhang H et al. Diagnostic and Prognostic Value of Serum Interleukin-6 in Colorectal Cancer. Medicine (Baltimore). 2016;95(2):e2502. (In English). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718291/. DOI: https://doi.org/10.1097/MD.0000000000002502

Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biology. 2016;37:11553–72. (In English).

Heikkilä K, Harris R, Lowe G et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes and Control. 2009;20:15–26. (In English). DOI: https://doi.org/10.1007/s10552-008-9212-z

Chan AT, Ogino S, Giovannucci EL, Fuchs CS. Inflammatory markers are associated with risk of colorectal cancer and chemopreventive response to anti-inflammatory drugs. Gastroenterology. 2011;140:799–808. (In English). DOI: https://doi.org/10.1053/ j.gastro.2010.11.041

Zhou B, Shu B, Yang J et al. C-reactive protein, interleukin-6 and the risk of colorectal cancer: a meta-analysis. Cancer Causes and Control. 2014;25(10):1397–405. (In English). DOI: https://doi.org/10.1007/s10552-014-0445-8

Song M, Wu K, Ogino S et al. A prospective study of plasma inflammatory markers and risk of colorectal cancer in men. Song. British Journal of Cancer. 2013;108:1891–8. (In English). DOI: https://doi.org/10.1038/bjc.2013.172

Kakourou A, Koutsioumpa C, Lopez DS et al. Interleukin-6 and risk of colorectal cancer: results from the CLUE II cohort and a meta-analysis of prospective studies. Cancer Causes and Control. 2015;26(10):1449–60. (In English). DOI: https://doi.org/10.1007/s10552-015-0641-1

Zeng J, Tang ZH, Liu S, Guo SS. Clinicopathological significance of overexpression of interleukin-6 in colorectal cancer. World Journal of Gastroenterology. 2017;23(10):1780–6. (In English). DOI: https://doi.org/10.3748/wjg.v23.i10. 1780

Hidayat F, Labeda I, Sampetoding S et al. Correlation of interleukin-6 and C-reactive protein levels in plasma with the stage and differentiation of colorectal cancer: A cross-sectional study in East Indonesia. Annals of Medicine and Surgery. 2021;62:334–40. (In English). DOI: https://doi.org/10.1016/j.amsu.2021.01.013

Wang Z, Wu P, Wu D et al. Prognostic and clinicopathological significance of serum interleukin-6 expression in colorectal cancer: a systematic review and meta-analysis. OncoTargets and Therapy. 2015;8:3793–801. (In English). DOI: https://doi.org/10.2147/OTT.S93297

De Vita F, Romano C, Orditura M et al. Interleukin-6 serum level correlates with survival in advanced gastrointestinal cancer patients but is not an independent prognostic indicator. Journal of Interferon and Cytokine Research. 2001;21(1):45–52. (In English). DOI: https://doi.org/10.1089/107999001459150

Belluco C, Nitti D, Frantz M et al. Interleukin-6 Blood Level Is Associated With Circulating Carcinoembryonic Antigen and Prognosis in Patients With Colorectal Cancer. Annals of Surgical Oncology. 2000;7(2):133–8. (In English). DOI: https://doi.org/10.1007/s10434-000-0133-7

Thomsen M, Kersten C, Sorbye H et al. Interleukin-6 and C-reactive protein as prognostic biomarkers in metastatic colorectal cancer. Oncotarget. 2016;7:75013–22. (In English). DOI: https://doi.org/10.18632/oncotarget.12601

Hara M, Nagasaki T, Shiga K et al. High serum levels of interleukin-6 in patients with advanced or metastatic colorectal cancer: the effect on the outcome and the response to chemotherapy plus bevacizumab. Surgery Today. 2017;47(4):483–9. (In English). DOI: https://doi.org/10.1007/s00595-016-1404-7

Yeh KY, Li YY, Hsieh LL et al. Analysis of the effect of serum interleukin-6 (IL-6) and soluble IL-6 receptor levels on survival of patients with colorectal cancer. Japanese Journal of Clinical Oncology. 2010;40(6):580–7. (In English). DOI: https://doi.org/10.1093/jjco/hyq010

Liu Y, Starr MD, Bulusu A et al. Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab. Cancer Medicine. 2013;2(2):234–42. (In English). DOI: https://doi.org/10.1002/cam4.71

Chang PH, Pan YP, Fan CW et al. Pretreatment serum interleukin-1beta, interleukin-6, and tumor necrosis factor alpha levels predict the progression of colorectal cancer. Cancer Medicine. 2016;5(3):426–33. (In English). DOI: https://doi.org/10.1002/cam4.602

Olsen J, Kirkeby LT, Olsen J et al. High interleukin-6 mRNA expression is a predictor of relapse in colon cancer. Anticancer Research. 2015;35(4):2235–40. (In English).

Guo Y, Wang B, Wang T et al. Biological characteristics of IL-6 and related intestinal diseases. International Journal of Biological Sciences. 2021;17(1):204–19. (In English). DOI: https://doi.org/10.7150/ijbs.51362

Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nature Immunology. 2015;16(5):448–57. (In English). DOI: https://doi.org/10.1038/ni.3153

Riethmueller S, Somasundaram P, Ehlers JC et al. Proteolytic Origin of the Soluble Human IL-6R In Vivo and a Decisive Role of N-Glycosylation. PLoS Biology. 2017;15(1):e2000080. (In English). URL: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC5218472/. DOI: https://doi.org/10.1371/journal.pbio.2000080

Sahoo A, Im SH. Interleukin and Interleukin Receptor Diversity: Role of Alternative Splicing. International Reviews of Immunology, 2010;29(1):77–109. (In English). DOI: https://doi.org/10.3109/08830180903349651

Taher MY, Davies DM, Maher J. The role of the interleukin (IL)-6/IL-receptor axis in cancer. Biochemical Society Transactions. 2018;46(6):1449–62. (In English). DOI: https://doi.org/10.1042/BST20180136

Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity. 2019;50(4):1007–23. (In English). DOI: https://doi.org/10.1016/j.immuni. 2019.03.026

Jostock T, Müllberg J, Ozbek S et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. European Journal of Biochemistry. 2001;268(1):160–7. (In English). DOI: https://doi.org/10.1046/j.1432-1327.2001. 01867.x

Heink S, Yogev N, Garbers C et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic th17 cells. Nature Immunology. 2017;18(1):74–85. (In English). DOI: https://doi.org/10.1038/ni.3632

Waldner MJ, Foersch S, Neurath MF. Interleukin-6 – A Key Regulator of Colorectal Cancer Development. International Journal of Biological Sciences. 2012;8(9):1248–53. (In English). DOI: https://doi.org/10.7150/ijbs.4614

Becker C, Fantini MC, Wirtz S et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle. 2005;4(2):217–20. (In English).

Schmidt S, Schumacher N, Schwarz J et al. ADAM17 is required for EGF-R–induced intestinal tumors via IL-6 trans-signaling. Journal of Experimental Medicine. 2018;215:1205–25. (In English). DOI: https://doi.org/10.1084/jem.20171696

Schumacher N, Rose-John S. ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers (Basel). 2019;11(11):1736. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895846/. (In English). DOI: https://doi.org/10.3390/ cancers11111736

Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells. 2020;9(12):2648. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763888/. (In English). DOI: https://doi.org/10.3390/cells9122648

Liu LQ, Nie SP, Shen MY et al. Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway. Journal of Agricultural and Food Chemistry. 2018;66(17):4384–93. (In English). DOI: https://doi.org/10.1021/acs.jafc.8b00710

Albasri AM, Elkablawy MA, Ansari IA, Alhujaily AS. Prognostic Significance of Cyclin D1 Over-expression in Colorectal Cancer: An Experience from Madinah, Saudi Arabia. Asian Pacific Journal of Cancer Prevention. 2019;20(8):2471–6. (In English). DOI: https://doi.org/10.31557/APJCP.2019.20.8.2471

Sipos F, Firneisz G, Műzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World Journal of Gastroenterology. 2016;22(35):7938–50. (In English). DOI: https://doi.org/10.3748/wjg. v22.i35.7938

Zhang S, Li J, Xie P et al. STAT3/c-Myc axis-mediated metabolism alternations of inflammation-related glycolysis involve with colorectal carcinogenesis. Rejuvenation Research. 2019;22(2):138–45. (In English). DOI: https://doi.org/10.1089/rej.2018.2089

Wang G, Wang Q, Huang Q et al. Upregulation of mtSSB by interleukin-6 promotes cell growth through mitochondrial biogenesis-mediated telomerase activation in colorectal cancer. International Journal of Cancer. 2019;144(10):2516–28. (In English). DOI: https://doi.org/10.1002/ijc.31978

Ibrahim ML, Lu C, Klement JD et al. Expression profiles and function of IL6 in polymorphonuclear myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy. 2020;69(11):2233–45. (In English). DOI: https://doi.org/10.1007/s00262-020-02620-w

Tian Y, Ye Y, Gao W et al. Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. International Journal of Colorectal Disease. 2011;26(1):13–22. (In English). DOI: https://doi.org/10.1007/s00384- 010-1060-056

Boidot R, Végran F, Lizard-Nacol S. Transcriptional regulation of the survivin gene. Molecular Biology Reports. 2014;41(1):233–40. (In English). DOI: https://doi.org/10.1007/ s11033-013-2856-0

Krieg A, Werner TA, Verde PE et al. Prognostic and clinicopathological significance of survivin in colorectal cancer: a meta-analysis. PLoS One. 2013;8(6):e65338. (In English). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/. DOI: https://doi.org/10.1371/journal.pone.0065338

Xiong H, Zhang ZG, Tian XQ et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia. 2008;10(3):287–97. (In English). DOI: https://doi.org/10.1593/neo.0797173

Niu G, Wright KL, Huang M et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 2002;21(13):2000–8. (In English). DOI: https://doi.org/10.1038/sj.onc.1205260

Mohamed SY, Mohammed HL, Ibrahim HM et al. Role of VEGF, CD105, and CD31 in the Prognosis of Colorectal Cancer Cases. Journal of Gastrointestinal Cancer. 2019;50(1):23–34. (In English). DOI: https://doi.org/10.1007/s12029-017-0014-y

Sun Q, Shang Y, Sun F et al. Interleukin-6 promotes epithelial-mesenchymal transition and cell invasion through integrin β6 upregulation in colorectal cancer. Oxidative Medicine and Cellular Longevity. 2020;2020:8032187. (In English). URL: https://www.hindawi.com/journals/omcl/2020/8032187/. DOI: https://doi.org/10.1155/2020/ 8032187/

Liu H, Ren G, Wang T et al. Aberrantly expressed Fra-1 by IL-6/ STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial-mesenchymal transition. Carcinogenesis. 2015;36(4):459–68. (In English). DOI: https://doi.org/10.1093/carcin/bgv017

Holmer R, Wätzig GH, Tiwari S et al. Interleukin-6 trans-signaling increases the expression of carcinoembryonic antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells. BMC Cancer. 2015;15:975. (In English). URL: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1950-1. DOI: https://doi.org/10.1186/s12885-015- 1950-1

Rokavec M, Oner MG, Li H et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. Journal of Clinical Investigation. 2014;124(4):1853–67. (In English).

Tseng-Rogenski SS, Hamaya Y, Choi DY, Carethers JM. Interleukin 6 alters localization of hMSH3, leading to DNA mismatch repair defects in colorectal cancer cells. Gastroenterology. 2015;148(3):579–89. (In English). DOI: https://doi.org/10.1053/j.gastro.2014.11.027

Chen L, Wang S, Wang Y et al. IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget. 2018;9(25):17443–54. (In English). DOI: https://doi.org/10.18632/oncotarget.24734

Wei C, Yang C, Wang S et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular Cancer. 2019;18(1):64. (In English). URL: https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-019-0976-4. DOI: https://doi.org/10.1186/s12943-019-0976-4

Zhang X, Hu F, Li G et al. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death and Disease. 2018;9(2):2р. (In English). URL: https://www.nature.com/articles/s41419-017-0176-3. DOI: https://doi.org/10.1038/ s41419-017-0176-357.

Nagasaki T, Hara M, Nakanishi H et al. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. British Journal of Cancer. 2014;110(2):469–78. (In English). DOI: https://doi.org/10.1038/bjc.2013.748

Kim B, Seo Y, Kwon JH et al. IL-6 and IL-8, secreted by myofibroblasts in the tumor microenvironment, activate HES1 to expand the cancer stem cell population in early colorectal tumor. Molecular Carcinogenesis. 2021;60(3):188–200. (In English). DOI: https://doi.org/10.1002/mc.23283

Wang T, Song P, Zhong T et al. The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties. Oncogene. 2019;38(25):4932–47. (In English). DOI: https://doi.org/10.1038/s41388-019-0763-0

Ohno Y, Kitamura H, Takahashi N et al. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells. Cancer Immunology, Immunotherapy. 2016;65(2):193–204. (In English). DOI: https://doi.org/10.1007/s00262-015-1791-4

Ohno Y, Toyoshima Y, Yurino H et al. Lack of interleukin-6 in the tumor microenvironment augments type-1 immunity and increases the efficacy of cancer immunotherapy. Cancer Science. 2017;108(10):1959–66. (In English). DOI: https://doi.org/10.1111/cas.13330

Toyoshima Y, Kitamura H, Xiang H et al. IL6 Modulates the Immune Status of the Tumor Microenvironment to Facilitate Metastatic Colonization of Colorectal Cancer Cells. Cancer Immunology Research. 2019;7(12):1944–57. (In English). DOI: https://doi.org/10.1158/2326-6066.CIR-18-0766

Coward J, Kulbe H, Chakravarty P et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research. 2011;17(18):6083–96. (In English). DOI: https://doi.org/10.1158/1078-0432.CCR-11-0945

Cavarretta IT, Neuwirt H, Zaki MH et al. Mcl-1 is regulated by IL-6 and mediates the survival activity of the cytokine in a model of late stage prostate carcinoma. Advances in Experimental Medicine and Biology. 2008;617:547–55. (In English). DOI: https://doi.org/10.1007/978-0-387-69080-3_56

Song L, Smith MA, Doshi P et al. Antitumor efficacy of the anti-interleukin- 6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. Journal of Thoracic Oncology. 2014;9(7):974–82. (In English). DOI: https://doi.org/10.1097/JTO. 0000000000000193

Angevin E, Tabernero J, Elez E et al. A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clinical Cancer Research. 2014;20(8):2192–204. (In English). DOI: https://doi.org/10.1158/1078-0432.CCR-13-2200

Wang ZY, Zhang JA, Wu XJ et al. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin. Mediators of Inflammation. 2016;2016:8026494. (In English). URL: https://www.hindawi.com/journals/mi/2016/8026494/. DOI: https://doi.org/10.1155/2016/8026494

Hsu CP, Chen YL, Huang CC et al. Anti-interleukin-6 receptor antibody inhibits the progression in human colon carcinoma cells. The Journal of Clinical Investigation. 2011;41(3):277–84. (In English). DOI: https://doi.org/10.1111/j.1365-2362.2010.02405

Ito H, Takazoe M, Fukuda Y et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126(4):989–96. (In English). DOI: https://doi.org/10.1053/j.gastro.2004.01.012

Brooks GD, McLeod L, Alhayyani S et al. IL6 Trans-signaling Promotes KRAS-Driven Lung Carcinogenesis. Cancer Research. 2016;76(4):866–76. (In English). DOI: https://doi.org/10.1158/0008-5472.CAN-15-2388

Goumas FA, Holmer R, Egberts JH et al. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. International Journal of Cancer. 2015;137(5):1035–46. (In English). DOI: https://doi.org/10.1002/ijc.29445

Schreiber S, Aden K, Bernardes JP et al. Therapeutic IL-6 trans-signalling inhibition by olamkicept (sgp130Fc) in patients with active inflammatory bowel disease. Gastroenterology. 2021. (In English). URL: https://www.gastrojournal.org/article/S0016-5085(21)00467-4/fulltext/. DOI: https://doi.org/10.1053/j.gastro.2021.02.062/

Wang SW, Hu J, Guo QH et al. AZD1480, a JAK inhibitor, inhibits cell growth and survival of colorectal cancer via modulating the JAK2/STAT3 signaling pathway. Oncology Reports. 2014;32(5):1991–8. (In English). DOI: https://doi.org/10.3892/ or.2014.3477

Plimack ER, Lorusso PM, McCoon P et al. AZD1480: a phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist. 2013;18(7):819–20. (In English). DOI: https://doi.org/10.1634/theoncologist.2013-0198

Regenbogen T, Chen L, Trinkaus K et al. Pacritinib to inhibit JAK/STAT signaling in refractory metastatic colon and rectal cancer. Journal of Gastrointestinal Oncology. 2017;8(6):985–9. (In English). DOI: https://doi.org/10.21037/ jgo.2017.08.16

Fogelman D, Cubillo A, García-Alfonso P et al. Randomized, double-blind, phase two study of ruxolitinib plus regorafenib in patients with relapsed/refractory metastatic colorectal cancer. Cancer Medicine. 2018;7(11):5382–93. (In English). DOI: https://doi.org/10.1002/cam4.1703

Brambilla L, Genini D, Laurini E et al. Hitting the right spot: mechanism of action of OPB-31121, a novel and potent inhibitor of the Signal Transducer and Activator of Transcription 3 (STAT3). Molecular Oncology. 2015;9(6):1194–206. (In English). DOI: https://doi.org/10.1016/j.molonc.2015.02.012

Oh DY, Lee SH, Han SW et al. Phase I Study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Research Treatment. 2015;47(4):607–15. (In English). DOI: https://doi.org/10.4143/crt.2014.249

Lau YK, Ramaiyer M, Johnson DE, Grandis JR. Targeting STAT3 in cancer with nucleotide therapeutics.Cancers (Basel). 2019;11(11):1681. (In English). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896109/. DOI: https://doi.org/10.3390/ cancers11111681

Wei N, Li J, Fang C et al. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2019;38(10):1676–87. (In English). DOI: https://doi.org/10.1038/s41388-018-0547-y

Shi W, Yan D, Zhao C et al. Inhibition of IL-6/STAT3 signaling in human cancer cells using Evista. Biochemical and Biophysical Research Communications. 2017;491(1)159–65. (In English). DOI: https://doi.org/10.1016/j.bbrc. 2017.07.067

Kang S, Kim BR, Kang MH et al. Anti-metastatic effect of metformin via repression of interleukin 6-induced epithelial-mesenchymal transition in human. PLoS One. 2018;13(10):е0205449. (In English). URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205449. DOI: https://doi.org/10.1371/journal.pone.0205449

Zhao H, Zhang X, Chen X et al. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicology and Applied Pharmacology. 2014;279(3):311–21. (In English). DOI: https://doi.org/10.1016/j.taap.2014.07.001

Do EJ, Hwang SW, Kim SY et al. Suppression of colitis-associated carcinogenesis through modulation of IL-6/STAT3 pathway by balsalazide and VSL#3. Journal of Gastroenterology and Hepatology. 2016;31(8):1453–61. (In English).

Zheng R, Ma J, Wang D et al. Chemopreventive Effects of Silibinin on Colitis-Associated Tumorigenesis by Inhibiting IL-6/STAT3 Signaling Pathway. Mediators of Inflammation. 2018;2018(1):1562010. (In English). URL: https://www.hindawi.com/journals/mi/2018/1562010/. DOI: https://doi.org/10.1155/2018/1562010

Sun D, Shen W, Zhang F et al. 3 α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells. Biomedicine and Pharmacotherapy. 2018;101:107–14. (In English). DOI: https://doi.org/10.1016/j.biopha.2018.02.062

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.