Анотація
Актуальність. Вплив інсулінорезистентності щодо можливості збільшення ризику раку щитоподібної залози (РЩЗ) останнім часом привертає все більшу увагу науковців. Ця проблема все ще далека від остаточного розв’язання. Вивчення цього зв’язку може позначитися на ефективності лікування зазначеної розповсюдженої патології.
Мета роботи. Розглянути поточні літературні джерела, які висвітлюють дослідження взаємозв’язку між інсулінорезистентністю (ІР) та раком щитоподібної залози, а також можливі механізми такого зв’язку.
Матеріали та методи. Пошук літератури було здійснено ручним методом за ключовими словами (рак щитоподібної залози, інсулінорезистентність, інсуліноподібний фактор росту – 1 та 2 (ІФР-1, ІФР-2), абдомінальне ожиріння, збільшення індексу маси тіла, метформін), а також розглянуто літературні джерела з доказових баз даних PubMed, Web of Science. Брали до уваги метааналізи, систематичні огляди та когортні дослідження. Всього було опрацьовано 148 джерел літератури. Перевага була віддана джерелам, опублікованим за останні 10 років.
Результати та їх обговорення. Інсулінорезистентність розглядається як важливий незалежний чинник розвитку багатьох злоякісних новоутворень. Свою канцерогенну дію інсулінорезистентність чинить як самостійно, так і через пов’язані з нею метаболічні порушення. Встановлено, що надмірна маса тіла й ожиріння значною мірою пов’язані з більш агресивними клініко-патологічними ознаками РЩЗ. Недавні дослідження показали більший об’єм щитоподібної залози та вищий ризик утворення вузлів у пацієнтів з ІР. Вісь ІФР є одним з основних чинників трансформації щитоподібної залози. Терапевтичні підходи щодо усунення метаболічного синдрому й асоційованих із ним ендокринних порушень для профілактики та терапії онкологічних захворювань привертають все більший науковий інтерес. У дослідженнях продемонстровано протипухлинні властивості метформіну та його здатність гальмувати канцерогенез.
Висновки. Поданий аналіз літератури довів, що проблема лікування злоякісних новоутворень щитоподібної залози та їхнього метастазування зумовлена не тільки морфологічними, клінічними та молекулярно-біологічними особливостями самої пухлини, а й недостатніми відомостями щодо зв’язку інсулінорезистентності, абдомінального ожиріння, збільшення індексу маси тіла, висококалорійного раціону харчування та зменшення вживання поліненасичених жирів, шкідливого впливу довкілля з молекулярними змінами, специфічними для раку щитоподібної залози. Це підтверджується значним зростанням захворюваності на рак щитоподібної залози, особливо папілярного гістотипу, паралельно зі зростанням поширеності ожиріння. Особливу увагу приділяють вивченню можливостей зниження захворюваності та смертності від онкологічної патології при застосуванні засобів, які стабілізують інсулін та сприяють зменшенню ступеня гіперінсулінемії, одним із яких є метформін
Посилання
Gambhir S, Vyas D, Hollis M, Aekka A, Vyas A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World journal of gastroenterology. 2015;21(11):3174–83. (In English). DOI: https://doi.org/10.3748/wjg.v21.i11.3174
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer. 2019;144(8):1941–53. (In English). DOI: https://doi.org/10.1002/ijc.31937
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394–424. (In English). DOI: https://doi.org/10.3322/caac.21492
Davies L, Morris LG, Haymart M, Chen AY, Goldenberg D, Morris J et al. American association of clinical endocrinologists and American College of endocrinology disease state clinical review: the increasing incidence of thyroid cancer. Endocrine practice. 2015;21(6):686–96. (In English). DOI: https://doi.org/10.4158/EP14466.DSCR
Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. The Impact of Diagnostic Changes on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Selected High-Resource Countries. Thyroid. 2015;25(10):1127–36. (In English). DOI: https://doi.org/10.1089/thy.2015.0116
Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA. 2017;317(13):1338–48. (In English). DOI: https://doi.org/10.1001/jama.2017.2719
Milano AF. Thyroid Cancer: 20-Year Comparative Mortality and Survival Analysis of Six Thyroid Cancer Histologic Subtypes by Age, Sex, Race, Stage, Cohort Entry Time-Period and Disease Duration (SEER*Stat 8.3.2) A Systematic Review of 145,457 Cases for Diagnosis Years 1993-2013. Journal of insurance medicine. 2018;47(3):143–58. (In English). DOI: https://doi.org/10.17849/insm-47-03-143-158
Lortet-Tieulent J, Franceschi S, Dal Maso L, Vaccarella S. Thyroid cancer "epidemic" also occurs in low- and middle-income countries. International journal of cancer. 2019;144 (9):2082–7. (In English). DOI: https://doi.org/10.1002/ijc.31884
Lubitz CC, Sosa JA. The changing landscape of papillary thyroid cancer: Epidemiology, management, and the implications for patients. Cancer. 2016;122(24):3754–9. (In English). DOI: https://doi.org/10.1002/cncr.30201
Raposo L, Morais S, Oliveira MJ et al. Trends in thyroid cancer incidence and mortality in Portugal. European journal of cancer prevention. 2017;26:135–43. (In English). DOI: https://doi.org/10.1097/CEJ.0000000000000229
Jung YS, Oh CM, Kim Y et al. Long-term survival of patients with thyroid cancer according to the methods of tumor detection: A nationwide cohort study in Korea. PLoS One. 2018;13(4):0194743. (In English). DOI: https://doi.org/10.1371/journal.pone.0194743
Ito Y, Miyauchi A, Kihara M et al. Overall Survival of Papillary Thyroid Carcinoma Patients: A Single-Institution Long-Term Follow-Up of 5897 Patients. World journal of surgery. 2018;42(3):615–22. (In English). DOI: https://doi.org/10.1007/s00268-018-4479-z
Directory of the main indicators of the activity of the endocrinological service of Ukraine for 2015. Endocrinology. 2016;21(21):38. (In Ukrainian).
Malaguarnera R, Vella V, Pellegriti G, Belfiore A. Editorial: Clinical and Molecular Epidemiology of Thyroid Cancer of Follicular Origin. Front Endocrinol (Lausanne). 2018;9:67. (In English). DOI: https://doi.org/10.3389/fendo.2018.00067
Tavarelli M, Malandrino P, Vigneri P et al. Anaplastic Thyroid Cancer in Sicily: The Role of Environmental Characteristics. Front Endocrinol (Lausanne). 2017;8:277. (In English). DOI: https://doi.org/10.3389/fendo.2017.00277
Malaguarnera R, Vella V, Pellegriti G, Belfiore A. Editorial: Clinical and Molecular Epidemiology of Thyroid Cancer of Follicular Origin. Front Endocrinol (Lausanne). 2018;9:67. (In English). DOI: https://doi.org/10.3389/fendo.2018.00067
Wang Z, Luo J, Zhang Y et al. Metformin and thyroid carcinoma incidence and prognosis: A systematic review and meta-analysis. PLoS One. 2022;17(7):e0271038. (In English). DOI: https://doi.org/10.1371/journal.pone.0271038
Zaida AM, Eidb E, Goudab SI еt al. Evaluation of Risk Factors for Malignancy in Patients With Thyroid Nodules. Journal of Endocrinology and Metabolism. 2022;12:66–72. (In English). DOI: https://doi.org/10.14740/jem770
Yildirim Simsir I, Cetinkalp S, Kabalak T. Review of Factors Contributing to Nodular Goiter and Thyroid Carcinoma. Medical principles and practice. 2020;29(1):1–5. (In English). DOI: https://doi.org/10.1159/000503575
Franchini F, Palatucci G, Colao A et al. Obesity and Thyroid Cancer Risk: An Update. International journal of environmental research and public health. 2022;19(3):1116. (In English). DOI: https://doi.org/10.3390/ijerph19031116
Heidari Z, Abdani M, Mansournia MA. Insulin Resistance Associated With Differentiated Thyroid Carcinoma: Penalized Conditional Logistic Regression Analysis of a Matched Case-Control Study Data. International journal of endocrinology and metabolism. 2017;16(1):e14545. (In English). DOI: https://doi.org/10.5812/ijem.14545
Akker M, Güldiken S, Sipahi T et al. Investigation of insulin resistance gene polymorphisms in patients with differentiated thyroid cancer. Molecular biology reports. 2014;41(5):3541–7. (In English). DOI: 10.1007/s11033-014-3218-2
Kilvert A, Fox C. Hyperinsulinaemia and cancer risk: cause and effect? Practikal Diabets. 2020;37(6):223–7. (In English). DOI: https://doi.org/10.1002/pdi.2310
Amin MN, Hussain MS, Sarwar MS et al. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes & metabolic syndrome. 2019;13(2):1213–24. (In English). DOI: https://doi.org/10.1016/j.dsx.2019.01.041
Chiefari E, Mirabelli M, La Vignera S et al. Insulin Resistance and Cancer: In Search for a Causal Link. International journal of molecular sciences. 2021;22(20):11137. (In English). DOI: https://doi.org/10.3390/ijms222011137
DiMenna FJ, Arad AD. The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. Cardiovascular endocrinology & metabolism. 2020;10(3):149–61. (In English). DOI: https://doi.org/10.1097/XCE.0000000000000239
Fathi Dizaji B. The investigations of genetic determinants of the metabolic syndrome. Diabetes & metabolic syndrome. 2018;12(5):783–9. (In English). DOI: https://doi.org/10.1016/j.dsx.2018.04.009
Matrone A, Ferrari F, Santini F, Elisei R. Obesity as a risk factor for thyroid cancer. Current opinion in endocrinology, diabetes, and obesity. 2020;27(5):358–63. (In English). DOI: https://doi.org/10.1097/MED.0000000000000556
Harikrishna A Ishak A, Ellinides A et al. The impact of obesity and insulin resistance on thyroid cancer: A systematic review. Maturitas. 2019;125:45–9. (In English). DOI: https://doi.org/10.1016/j.maturitas.2019.03.022
Kitahara CM, McCullough ML, Franceschi S et al. Anthropometric Factors and Thyroid Cancer Risk by Histological Subtype: Pooled Analysis of 22 Prospective Studies. Thyroid. 2016;26:306–18. (In English). DOI: https://doi.org/10.1089/thy.2015.0319
Schmid D, Ricci C, Behrens G et al. Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obesity reviews. 2015;16:1042–54. (In English). DOI: https://doi.org/10.1111/obr.12321
Choi JS, Kim EK, Moon HJ et al. Higher body mass index may be a predictor of extrathyroidal extension in patients with papillary thyroid microcarcinoma. Endocrine. 2015;48:264–71. (In English). DOI: https://doi.org/10.1007/s12020-014-0293-z
Ma J, Huang M, Wang L et al. Obesity and risk of thyroid cancer: evidence from a meta-analysis of 21 observational studies. Medical science monitor. 2015;21:283–91. (In English). DOI: https://doi.org/10.12659/MSM.892035
Mayans L. Metabolic Syndrome: Insulin Resistance and Prediabetes. FP essentials. 2015;435:11–6. (In English).
Kim KN, Hwang Y, Kim KH et al. Adolescent overweight and obesity and the risk of papillary thyroid cancer in adulthood: a large-scale case-control study. Scientific reports. 2020;10(1):5000. (In English). DOI: https://doi.org/10.1038/s41598-020-59245-3
Kitahara CM, Pfeiffer RM, Sosa JA, Shiels MS. Impact of Overweight and Obesity on US Papillary Thyroid Cancer Incidence Trends (1995–2015). Journal of the National Cancer Institute. 2020;112(8):810–7. (In English). DOI: https://doi.org/10.1093/jnci/djz202
Li C, Zhou L, Dionigi G et al. The Association Between Tumor Tissue Calcification, Obesity, and Thyroid Cancer Invasiveness In A Cohort Study. Endocrine practice. 2020;26(8):830–9. (In English). DOI: https://doi.org/10.4158/EP-2020-0057
Kim JM. The clinical importance of overweight or obesity on tumor recurrence in papillary thyroid carcinoma. Gland surgery. 2022;11(1):35–41. (In English). DOI: https://doi.org/10.21037/gs-21-695
Khmara IM. Thyroid cancer in the context of increasing incidence (literature review and own data). Eurasian journal of oncology. 2014;2(02):94–106. (In Russian).
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor perspectives in biology. 2014;6:a009191. (In English). DOI: https://doi.org/10.1101/cshperspect.a009191
Gonçalves CG, Glade MJ, Meguid MM. Metabolically healthy obese individuals: Key protective factors. Nutrition. 2016;32:14–20. (In English). DOI: https://doi.org/10.1016/j.nut.2015.07.010
Devanathan N, Kimble-Hill AC. Systematic Survey of the Role of IGF in the Link Between Diabetes and Cancer. Indiana University journal of undergraduate research. 2018;4(1):17–26. (In English). DOI: https://doi.org/10.14434/iujur.v4i1.24499
Bowers LW, Rossi EL, O'Flanagan CH et al. The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Front Endocrinol (Lausanne). 2015;6:77. (In English). DOI: https://doi.org/10.3389/fendo.2015.00077
Ruggiero R, Bosco A, Pirozzi R et al. Papillary thyroid microcarcinoma in super obese patient. Giornale italiano di chirurgia. 2018;39(3):173–6. (In English).
Sousa PA, Vaisman M, Carneiro JR et al. Prevalence of goiter and thyroid nodular disease in patients with class III obesity. Arquivos brasileiros de endocrinologia e metabologia. 2013;57(2):120–5. (In English). DOI: https://doi.org/10.1590/s0004-27302013000200004
Marzullo P, Mele C, Mai S et al. The impact of the metabolic phenotype on thyroid function in obesity. Diabetology & metabolic syndrome. 2016;8(1):59. (In English). DOI: https://doi.org/10.1186/s13098-016-0177-x
Layegh P, Asadi A, Jangjoo A et al. Comparison of thyroid volume, TSH, free t4 and the prevalence of thyroid nodules in obese and non-obese subjects and correlation of these parameters with insulin resistance status. Caspian journal of internal medicine. 2020;11(3):278–82. (In English). DOI: https://doi.org/10.22088/cjim.11.3.278
Wang K, Yang Y, Wu Y et al. The association between insulin resistance and vascularization of thyroid nodules. The Journal of clinical endocrinology and metabolism. 2015;100(1):184–92. (In English). DOI: https://doi.org/10.1210/jc.2014-2723
Guo H, Sun M, He W et al. The prevalence of thyroid nodules and its relationship with metabolic parameters in a Chinese community-based population aged over 40 years. Endocrine. 2014;45(2):230–5. (In English). DOI: https://doi.org/10.1007/s12020-013-9968-0
Grimmichova T, Haluzik M, Vondra K et al. Relations of prediabetes and type 2 diabetes to the thyroid cancer. Endocrine connections. 2020;9(7):607–16. (In English). DOI: https://doi.org/10.1530/EC-20-0180
Xu N, Liu H, Wang Y, Xue Y. RelationshipbetweeninsulinresistanceandthyroidcancerinChineseeuthyroidsubjectswithoutconditionsaffectinginsulinresistance. BMC endocrine disorders. 2022;22(1):58. (In English). DOI: https://doi.org/10.1186/s12902-022-00943-6
Balkan F, Onal ED, Usluogullari A et al. Is there any association between insulin resistance and thyroid cancer? : A case control study. Endocrine. 2014;45(1):55–60. (In English).
Ali A, Mirza Y, Faizan U et al. Association of Obesity and Thyroid Cancer at a Tertiary Care Hospital in Pakistan. Cureus. 2018;10(3):e2364. (In English). DOI: https://doi.org/10.7759/cureus.2364
Kwon H, Han KD, Park CY. Weight change is significantly associated with risk of thyroid cancer: A nationwide population-based cohort study. Scientific reports. 2019; 9(1):1546. (In English). DOI: https://doi.org/10.1038/s41598-018-38203-0
Iyengar NM, Gucalp A, Dannenberg AJ et al. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. Journal of clinical oncology. 2016;34(35):4270–6. (In English). DOI: https://doi.org/10.1200/JCO.2016.67.4283
Son H, Lee H, Kang K et al. The risk of thyroid cancer and obesity: A nationwide population-based study using the Korea National Health Insurance Corporation cohort database. Surgical oncology. 2018;27(2):166–71. (In English). DOI: https://doi.org/10.1016/j.suronc.2018.03.001
Vella V, Sciacca L, Pandini G et al. The IGF system in thyroid cancer: new concepts. Molecular pathology. 2001;54(3):121–4. (In English). DOI: https://doi.org/10.1136/mp.54.3.121
Manzella L, Massimino M, Stella S et al. Activation of the IGF Axis in Thyroid Cancer: Implications for Tumorigenesis and Treatment. International journal of molecular sciences. 2019;20(13):E3258. (In English). DOI: https://doi.org/10.3390/ijms20133258
Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. BioMed research international. 2015;2015:538019. (In English). DOI: https://doi.org/10.1155/2015/538019
Simpson A, Petnga W, Macaulay VM et al. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Targeted oncology. 2017;12:571–97. (In English). DOI: https://doi.org/10.1007/s11523-017-0514-5
Vella V, Malaguarnera R. The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. International journal of molecular sciences. 2018;19:3814. (In English). DOI: https://doi.org/10.3390/ijms19123814
Sciacca L, Vella V, Frittitta L. Long-acting insulin analogs and cancer. Nutrition, metabolism, and cardiovascular diseases. 2018;28(5):436–43. DOI: https://doi.org/10.1016/j.numecd.2018.02.010
Ochnik AM, Baxter RC. Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer. Endocrine-related cancer. 2016;23(11):R513–36. (In English). DOI: https://doi.org/10.1530/ERC-16-0218
Vigneri PG, Tirro E, Pennisi MS et al. The insulin/igf system in colorectal cancer development and resistance to therapy. Frontiers in oncology. 2015;5:230. (In English). DOI: https://doi.org/10.3389/fonc.2015.00230
Zhang R, Zhang P, Wang H et al. Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem cell research & therapy. 2015;6(1):262. (In English). DOI: https://doi.org/10.1186/s13287-015-0249-0
Liu YJ, Qiang W, Shi J et al. Expression and significance of IGF-1 and IGF-1R in thyroid nodules. Endocrine. 2013;44:158–64. (In English). DOI: https://doi.org/10.1007/s12020-012-9864-z
Belfiore A, Pandini G, Vella V et al. Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie. 1999;81:403–7. (In English). DOI: https://doi.org/10.1016/s0300-9084(99)80088-1
Schmidt JA, Allen NE, Almquist M et al. Insulin-like growth factor-i and risk of differentiated thyroid carcinoma in the European prospective investigation into cancer and nutrition. Cancer epidemiology, biomarkers & prevention. 2014;23:976–85. (In English). DOI: https://doi.org/10.1158/1055-9965.EPI-13-1210-T
Huang X, Liu G, Guo J et al. The PI3K/AKT pathway in obesity and type 2 diabetes. International journal of biological sciences. 2018;14(11):1483–96. (In English). DOI: https://doi.org/10.7150/ijbs.27173
Gristina V, Cupri MG, Torchio M et al. Diabetes and cancer: A critical appraisal of the pathogenetic and therapeutic links. Biomedical reports. 2015;3(2):131–6. (In English). DOI: https://doi.org/10.3892/br.2014.399
Tang S, Yuan X, Song J et al. Association analyses of the JAK/STAT signaling pathway with the progression and prognosis of colon cancer. Oncology letters. 2019;17(1):159–64. (In English). DOI: https://doi.org/10.3892/ol.2018.9569
Mullen M, Gonzalez-Perez RR. Leptin-Induced JAK/STAT Signaling and Cancer Growth. Vaccines (Basel). 2016;4(3):E26. (In English). DOI: https://doi.org/10.3390/vaccines4030026
Berstein LM, Vasilyev DA, Iyevleva AG et al. Potential and real 'antineoplastic' and metabolic effect of metformin in diabetic and nondiabetic postmenopausal females. Future oncology. 2015;11(5):759–70. (In English). DOI: https://doi.org/10.2217/fon.14.317
Anisimov V N. Do metformin a real anticarcinogen? A critical reappraisal of experimental data. Annals of translational medicine. 2014;2(6):60. (In English). DOI: https://doi.org/10.3978/j.issn.2305-5839.2014.06.02
Anisimov VN. Metformin for cancer and aging prevention: is it a time to make the long story short?. Oncotarget. 2015;6(37):39398–407. (In English). DOI: https://doi.org/10.18632/oncotarget.6347
Chan AT. Metformin for cancer prevention: a reason for optimism. The Lancet. Oncology. 2016;17(4):407–9. (In English). DOI: https://doi.org/10.1016/S1470-2045(16)00006-1
Zhou T, Xu X, Du M et al. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomedicine & pharmacotherapy. 2018;106:1227–35. (In English). DOI: https://doi.org/10.1016/j.biopha.2018.07.085
Zi F, Zi H, Li Y et al. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncology letterst. 2018;15(1):683–90. (In English). DOI: https://doi.org/10.3892/ol.2017.7412
Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nature reviews. Endocrinology. 2014;10:143–56. (In English). DOI: https://doi.org/10.1038/nrendo.2013.256
Saraei P, Asadi I, Kakar MA et al. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer management and research. 2019;11:3295–313. (In English). DOI: https://doi.org/10.2147/CMAR.S200059
Siavash M, Tabbakhian M, Sabzghabaee AM et al. Severity of Gastrointestinal Side Effects of Metformin Tablet Compared to Metformin Capsule in Type 2 Diabetes Mellitus Patients. Journal of research in pharmacy practice. 2017;6(2):73–6. (In English). DOI: https://doi.org/10.4103/jrpp.JRPP_17_2
Cao X, Wu Y, Wang J et al. The Effect of Metformin on Mortality Among Diabetic Cancer Patients: A Systematic Review and Meta-analysis. JNCI cancer spectrum. 2017;1(1):pkx007. (In English). DOI: https://doi.org/10.1093/jncics/pkx007
Hatoum D, McGowan EM. Recent advances in the use of metformin: can treating diabetes prevent breast cancer? BioMed research international. 2015;2015:548436. (In English). DOI: https://doi.org/10.1155/2015/548436
Wu L, Zhu J, Prokop LJ et al. Pharmacologic Therapy of Diabetes and Overall Cancer Risk and Mortality: A Meta-Analysis of 265 Studies. Scientific reports. 2015;5:10147. (In English). DOI: https://doi.org/10.1038/srep10147
Xin W, Fang L, Fang Q et al. Effects of metformin on survival outcomes of pancreatic cancer patients with diabetes: A meta-analysis. Molecular and clinical oncology. 2018;8(3):483–8. (In English). DOI: https://doi.org/10.3892/mco.2017.1541
Yu H, Zhong X, Gao P et al. The Potential Effect of Metformin on Cancer: An Umbrella Review. Frontiers in endocrinology. 2019;10:617. (In English). DOI: https://doi.org/10.3389/fendo.2019.00617
Cai X, Hu X, Tan X et al. Metformin Induced AMPK Activation, G0/G1 Phase Cell Cycle Arrest and the Inhibition of Growth of Esophageal Squamous Cell Carcinomas In Vitro and In Vivo. PLoS One. 2015;10(7):е0133349. (In English). DOI: https://doi.org/10.1371/journal.pone.0133349
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature reviews. Cancer. 2009;9(8):563–75. (In English). DOI: https://doi.org/10.1038/nrc2676
Peng M, Darko KO, Tao T et al. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer treatment reviews. 2017;54:24–33. (In English). DOI: https://doi.org/10.1016/j.ctrv.2017.01.005
Jia Y, Ma Z, Liu X et al. Metformin prevents DMH-induced colorectal cancer in diabetic rats by reversing the warburg effect. Cancer medicine. 2015;22(4):193–201. (In English). DOI: https://doi.org/10.1002/cam4.521
Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends in biochemical science. 2016;41(3):211–8. (In English). DOI: https://doi.org/10.1016/j.tibs.2015.12.001
Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annual review of medicine. 2015;66(1):17–29. (In English). DOI: https://doi.org/10.1146/annurev-med-062613-093128
Dong LR, Wang X, Hu K et al. Effects of metformin on papillary thyroid carcinoma in nude rats model. Journal of clinical otorhinolaryngology, head, and neck surgery. 2018;32(7):518–21. (In English). DOI: https://doi.org/10.13201/j.issn.1001-1781.2018.07.010
Hanly EK, Bednarczyk RB, Tuli NY et al. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Oncotarget. 2015;6:39702–13. (In English). DOI: https://doi.org/10.18632/oncotarget.4052
Klubo-Gwiezdzinska J, Costello JJr, Patel A et al. Treatment with metformin is associated with higher remission rate in diabetic patients with thyroid cancer. The Journal of clinical endocrinology and metabolism. 2013;98:3269–79. (In English). DOI: https://doi.org/10.1210/jc.2012-3799
Zou Z, Tao T, Li H et al. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell & bioscience. 2020;10:31. (In English). DOI: https://doi.org/10.1186/s13578-020-00396-1
Bikas A, Jensen K, Patel A et al. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin. Endocrine-related cancer. 2015;22:919–32. (In English). DOI: https://doi.org/10.1530/ERC-15-0402
Thakur S, Daley B, Gaskins K et al. Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer In Vitro and In Vivo. Clinical cancer research. 2018;24(16):4030–43. (In English). DOI: https://doi.org/10.1158/1078-0432.CCR-17-3167
Yu Y, Feng C, Kuang J et al. Metformin exerts an antitumoral effect on papillary thyroid cancer cells through altered cell energy metabolism and sensitized by BACH1 depletion. Endocrine. 2022;76(1):116–31. (In English). DOI: https://doi.org/10.1007/s12020-021-02977-7

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.